首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9413篇
  免费   889篇
  国内免费   2篇
  2021年   105篇
  2020年   77篇
  2019年   95篇
  2018年   90篇
  2017年   96篇
  2016年   149篇
  2015年   342篇
  2014年   347篇
  2013年   459篇
  2012年   594篇
  2011年   580篇
  2010年   371篇
  2009年   325篇
  2008年   458篇
  2007年   502篇
  2006年   486篇
  2005年   473篇
  2004年   428篇
  2003年   415篇
  2002年   423篇
  2001年   103篇
  2000年   80篇
  1999年   101篇
  1998年   136篇
  1997年   75篇
  1996年   64篇
  1995年   66篇
  1994年   70篇
  1993年   89篇
  1992年   92篇
  1991年   76篇
  1990年   78篇
  1989年   69篇
  1988年   63篇
  1987年   81篇
  1986年   85篇
  1985年   94篇
  1984年   102篇
  1983年   101篇
  1982年   96篇
  1981年   86篇
  1980年   106篇
  1979年   86篇
  1978年   97篇
  1977年   76篇
  1976年   82篇
  1975年   56篇
  1974年   74篇
  1973年   59篇
  1968年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
TonB protein couples cytoplasmic membrane electrochemical potential to active transport of iron-siderophore complexes and vitamin B12 through high-affinity outer membrane receptors of Gram-negative bacteria. The mechanism of energy transduction remains to be determined, but important concepts have already begun to emerge. Consistent with its function, TonB is anchored in the cytoplasmic membrane by its uncleaved amino terminus while largely occupying the periplasm. Both the connection to the cytoplasmic membrane and the amino acid sequences of the anchor are essential for activity. TonB directly associates with a number of envelope proteins, among them the outer membrane receptors and cytoplasmic membrane protein ExbB. ExbB and TonB interact through their respective transmembrane domains. ExbB is proposed to recycle TonB to an active conformation following energy transduction to the outer membrane. TonB most likely associates with the outer membrane receptors through its carboxy terminus, which is required for function. In contrast, the novel prolinerich region of TonB can be deleted without affecting function. A model that incorporates this information, as well as tempered speculation, is presented.  相似文献   
5.
The meander tail mouse harbors a recessive mutation on chromosome 4 that affects the anterior lobes of the cerebellum and the caudal vertebrae. Examination of the mea/mea cerebellum reveals that the complete disorganization of all cell types seen in the anterior lobes is separated by a sharp and consistent boundary from the normal cytoarchitecture of the posterior lobes. In the absence of any biochemical information regarding the affected gene product, attempts to clone the gene must rely on the strategy of reverse genetics. As an initial step in this process we have constructed a genetic linkage map spanning 68 cM of chromosome 4 using an intersubspecific phenotypic backcross. The loci included in this analysis are Calb, Ggtb, Lv, b, Ifa, mea, D4Rp1, Glut-1, Lck, Lmyc-1, and Eno-1. This analysis positions the mea phenotypic locus in the interval between Ifa and Glut1. These results also further define regions of homology between mouse chromosome 4 and human chromosomes 8, 1, and 9. This linkage map provides the means to evaluate candidate genes, and to identify tightly linked markers useful for cloning the meander tail locus.  相似文献   
6.
An explant culture system is described that allows examination of axonal growth from the tonically and phasically active motoneurons of the abdominal nerve cord of the crayfish. In this preparation, growth occurs from the cut end of the axon while the remainder of the motoneuron is undisturbed. In vitro growth from the branches of the third roots, which contain the axons from the tonic and phasic motoneurons of abdominal ganglia one through four, was verified as axonal by retrograde labeling of axons and neuronal somata within the nerve cord. Growth from the axons of phasic and tonic cells was observed as early as 24 h after plating and continued for an additional 7–10 days. The morphology and growth rates of the motor terminals differed between the tonic and phasic axons. The phasic axons grew significantly faster and branched more often than did the tonic motor axons. These differences in growth may be related to differences in motoneuron size or, may result from differences in electrical activity. Tonic motoneurons show spontaneous impulse activity for up to 6 days in culture, whereas phasic motoneurons show no spontaneous impulse activity. In addition, the differences in growth may be related to the morphological differences in tonic and phasic motor terminals observed in situ. © 1993 John Wiley & Sons, Inc.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号